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Two-dimensional fields of limiting stress  
 
 
9.1    Coulomb’s Analysis of Active Pressure using a Plane Surface of Slip  

In 1776, before the concept of stress was clear, Coulomb1 published his notable 
first paper on the application of the differential calculus to problems of architectural statics. 
His basic assumption was that the effective stress components 'σ normal andτ  tangential to 
a rupture plane satisfied a relationship such as 

.ρtan'στ +≤ k       (8.1 bis)  
But the importance of Coulomb’s work lies in the analysis that he developed rather than in 
this basic assumption. 

Let us consider the simple case of a smooth vertical wall which retains a horizontal 
layer of uniform soil, illustrated by the section of Fig. 9.1(a). For convenience, the analysis 
will be applied to unit length of the wall (perpendicular to the section) and we shall 
examine the conditions of limiting equilibrium which apply to one possible (plane) surface 
of rupture XY. 

The total forces acting on the wedge OXY are (a) the total force R acting across the 
rupture surface, (b) its weight ,2

1 axW γ=  and (c) the lateral force L supplied by the wall 
(which must be horizontal in this case). Suppose that this force L is applied through a 
hydraulic jack, and it is gradually reduced. We see directly from the triangle of forces in 
Fig. 9.1(a) that the force R must gradually be reduced, and more significantly that its 
inclination to the normal across the plane XY is increased. 
At some stage during this process the distributed pressures across the plane XY could have 
resultants on three segments 1, 2, and 3 as shown in Fig. 9.1(b). We have no knowledge of 
the actual distribution of stress except for the facts that the polygon of forces in Fig. 9.1(b) 
must close, and that for each segment the local shear stress τ cannot exceed the limiting 
magnitude given by eq. (8.1). 

However, if the jack force L can be reduced until on every segment of this 
particular rupture surface the limiting condition is reached then the local reactions can be 
divided into two parts of known magnitude. The force due to cohesion along the segment is 
proportional to the length of the segment; and in general with curved rupture surfaces the 
resultant of all cohesive reactions equals a cohesive force C parallel to the chord of the 
surface. The frictional reaction is inclined at the limiting angle ρ to the normal to the 
segment; and in general with curved rupture surfaces, the resultant F of all frictional 
reactions will depend on the distribution of normal pressure. If large normal pressures act 
at one end of the surface then the overall frictional reaction will be close to the normal to 
the curve at that end of the surface. However, in the special case of a plane surface of 
rupture the cohesion resultant C acts parallel with the plane and the overall frictional 
resultant F acts at an angle ρ to that plane. 
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Fig. 9.1 Limiting Equilibrium of a Retaining Wall 

 
So in the limiting case, the total sum of resolved components across each segment 

of the rupture surface must be as shown in Fig. 9.1(c), such that the total normal force 
θγθ cossin 2

1 axLN +=   
induces a total frictional resistance to sliding of 

ρtan)cossin(ρsin 2
1 θγθ axLFT +==  

which together with the total cohesive force )( 22 xakC +=  must be in equilibrium with 
the resolved components of W and L 

.cossin2
1 θθγ Lax −  

Multiplying through by )( 22 xa + and eliminating θ we get 
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for the least lateral force L that can successfully hold up the wedge OXY. If the total lateral 
force is allowed to fall below L then that particular wedge will actively slide down and 
increase the lateral force to the value L again. 

If we plot L versus x we find the lower curve of Fig. 9.2(a) with a maximum value 
when  
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which is satisfied by 
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2
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4
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⎛ −==
πεεax      (9.3) 

 
Fig. 9.2 Bounds of Possible Values for Lateral Force on Retaining Wall 

 
The significance of this maximum is as follows. Suppose the lateral force on the 

jack is slowly reduced and let us represent this by a shift of the faint horizontal lines in Fig. 
9.2(a) from value Li to Lj. The first rupture plane that can become active is the one at 

,tanεax =  inclined to the wall at an angle .)2ρ4( −π  The lateral force cannot fall 
below this value. If the lateral force could be reduced to Lk there would be two possible 
rupture planes, but any attempt to reduce the total force will simply be matched by activity 
of the weakest slip wedge at .tanεax =  The magnitude of this active lateral force is found 
by substituting εtanax = in the expression for L to give 

 εεγ tan2tan22
2
1 kaaLPA −==      (9.4)  

Where PA is Coulomb’s active lateral pressure force. Coulomb himself published this 
expression in the form 

lkamaPA −= 2         (9.5)  
and it was the derivation of this equation that was probably Coulomb’s major achievement 
in soil mechanics. He appreciated that for soil without cohesion (k = 0), PA reduces to 

,tan22
2
1 εγa and for soil without cohesion or friction )0ρ( ==k the active lateral force PA 

is 2
2
1 aγ  and simply reduces to the fluid force. The presence of friction and cohesion 

together reduce the active lateral force needed to retain this soil, below that needed to 
retain a fluid of the same density. 
 
9.2 Coulomb’s Analysis of Passive Pressure 

Coulomb’s calculation was then developed by considering that the lateral force 
becomes so large that wedges of soil tend to slip upwards along plane surfaces of rupture. 
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In that case the variation of lateral force L corresponds to the upper curve in Fig. 9.2(a) 
given by an equation 
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     (9.6) 

which can be obtained directly from the active case by changing the signs of k and ρ 
throughout. This curve has a minimum at εcotax =  when 

.cot2cot22
2
1 εεγ kaaPP +=        (9.7)  

The significance of this minimum is that when the lateral force rises causing passive 
resistance of the soil, the first plane of rupture on which slip can occur is the plane inclined 
to the vertical wall at an angle ).2ρ4( +π  If slip occurs on this plane the soil can 
continue to resist passively but with lateral force of not more than PP. This force is in 
excess of the fluid pressure 2

2
1 aγ  because of both friction and cohesion. 

In the range of possible lateral force PA PLP ≤≤  the soil is at rest. In the case of 
cohesionless soil with 3

12tan,30 == ερ o and the ratio .9=AP PP  This very wide range of 
possible values of L makes it necessary to introduce some additional consideration if a 
close estimate of a value of L is to be made. For example, in Coulomb’s design free-
standing walls withstand a lateral force 1.25 PA without overturning. It is recognized that 
the lateral force L may well exceed this design value but if it does so, it is supposed that a 
little outward movement of the wall will relieve the lateral force, which will then fall to the 
design value. In several experiments on large model retaining walls Terzaghi2 did establish 
this effect of Fig. 9.2(b); after a very small outward rotation (0.001 radian) of a retaining 
wall the lateral force fell to the active value, but much larger inward rotation (0.1 radian) 
was required before the lateral force approached the passive pressure. A phrase common in 
the literature is that the strains required to ‘mobilize the strength’ of the ground are large in 
the passive case and small in the active case. 

However, we must not forget that Coulomb’s calculation does not in itself contain 
any mention of the magnitude of strains or displacements. All that is specified is the 
direction of incipient movement on the slip plane as shown in Fig. 9.3. 

 

 
Fig. 9.3 Slip Planes for Active and Passive Failures 

  
By putting  in the eq. (9.5) for the active force 0=AP

εεγ tan2tan
2
10 22 kaaPA −==  

Coulomb found the height to which a face could stand unsupported to be  

;
tan
4

εγ
ka ≤       (9.8)  

and a face of this height would certainly fail under its own self- weight. He went on to 
consider whether a larger active force (or a lower unsupported height of a vertical face) 
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would be found for some surface of sliding other than plane (Fig. 9.4) and introduced the 
important idea of using vertical slices to find the pressures on a curved rupture surface. 
Unfortunately, he was writing before the nature of stress in a continuum was well 
understood and he wrongly supposed that he needed to specify limiting stresses both on the 
rupture surface and on the vertical planes between slices; this error prevented Coulomb 
from making a successful development of the method of slices. 

It is clearly possible to extend this simple method of analysis to obtain general 
solutions to problems where the retaining wall is battered, or rough, or the backfill is not 
horizontal or consists of several different strata. 

 
Fig. 9.4 Possible Curved Failure Surface Considered by Coulomb 

 

9.3 Coulomb’s Friction Circle and its Development in Gothenberg  
 In 1785 Coulomb wrote a prize paper3 on problems of cordage and rigging of ships. 
This paper included the solution to the problem of slip of ropes round frictional bollards, 
and the solution to the problem of the torsion of round spars. The paper also introduced the 
friction circle construction for analysis of the slip of a shaft, Fig. 9.5, in a frictional plane 
bearing. The shaft turns and slips along a line contact such that the reaction is inclined to 
the radius R at the friction angle ρ. Conveniently a ‘friction circle’ of radius R sin ρ is 
drawn, and a graphical construction is made in which the limiting reaction is tangential to 
the friction circle. Coulomb’s technique of 1785 was to be applied in 1916 to the problem 
of slip of soil on circular surfaces of rupture4 by the engineers of the Swedish port of 
Gothenberg where there was a series of failures of the quay walls. 

 

 
Fig. 9.5 Circular Shaft about to Slip 

 
One successful design of quay wall, Fig. 9.6(a), was based on the consideration of 

straight planes of sliding. In Fig. 9.6(b) the active force A, due to pressure of retained soil 
and superposed traffic, is made small by placing highly frictional gravel behind the wall; 
and the passive force P, due to resistance of a wedge of soil in front of the toe of the quay, 
is made large by placing highly frictional gravel there also. The next quay wall, shown in 
Fig. 9.7, should have been by these considerations more stable than its forerunner; the clay 
below this new fill was considered to be stiffer than at the former site, and yet ‘the quay 
wall slid slowly into the river in March 1916 just before it was completed and before any 
live load had been added to the quay area’. Borings and other observations showed that the 
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movement approximated to slip on a circular surface of sliding through the clay below the 
gravel fill. Yet another large quay wall was under construction for the Central Harbour and 
this failure made it imperative for the engineers concerned to revise their design principles. 

 

 
Fig. 9.6 Quay at the Sannegard Harbour 1914 (After Petterson) 

 

 
Fig. 9.7 The Stigberg Quay, Sliding Surface, 1 916 (After Petterson) 

 
Their investigation was based on the general view held at that time, that friction 

governed the behaviour of all kinds of soil and that a graphical method of polygons of 
force was the most practical basis for the analysis. An existing gravel fill in the Central 
Harbour project was extended to form a test load: when this test was in the stage shown in 
Fig. 9.8 a crack was observed in the fill and the soil moved slowly about 17 cm outward 
and 25 cm downwards and did not come to rest for 9 days. Analysis of the failures of both 
the quay wall and test load was made in the manner shown in Fig. 9.8. 
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Fig. 9.8 Investigation of Stability under the Test Load in the Free  

Harbour, 1916 (After Petterson) 
 

A possible circular sliding surface of radius R was drawn through the ground, the 
cross-section within the circle divided into vertical slices, and the vertical weight V and 
centre of gravity determined for each slice. A horizontal force H was assumed to act 
between slices at the lower third point of the interface. A tentative value was assumed for 
the friction angle effective along the circular arc and a friction circle of radius R sin ρ was 
drawn. For each slice number n the vertical weight V, was known, and the frictional 
reaction across the base of the slice had to be in a direction tangential to the friction circle 
inclined at an angle nα to the vertical. Hence the difference between the horizontal forces 
to either side of this slice was 

.tan1 nnnn VHH α=− −  
The force polygon of Fig. 9.8 was constructed starting from the first slice; when the 

last slice was reached the polygon should close with no horizontal reaction to the right. 
Trials with different values showed what frictional angle ρ was required just to maintain 
equilibrium of the sliding mass within that particular circular surface of sliding. Then many 
other possible sliding surfaces were thus analysed and it was considered that the surface 
which required the largest value of ρ was the most critical and failure would occur first 
along it. In the analysis of the Central Harbour failure of Fig. 9.8, a frictional angle ρ = 24° 
was assumed for the part of the sliding surface that passed through the gravel, and the 
largest value of ρ required for stability of the clay was found to be about 14°. For the quay 
wall failure of Fig. 9.7 the value of ρ required for stability was about 10°.  

The analysis of these failures made it clear that quay walls with heavy gravel fills 
were unsuitable for that particular clay foundation. The design for the new quay wall in the 
Central Harbour was modified as shown in Fig. 9.9(a). The weight of gravel filling in front 
of the quay wall was unaltered but the weight below the quay was reduced; the quay 
became a loading platform resting on wooden piles that were driven down through a gravel 
slope into the underlying clay. The factor of safety of the new design was estimated as 
follows. The force polygon was started from both ends. A division was introduced at the 
vertical plane tangential to the friction circle. All slices to the right of this plane were 
considered to be actively causing an increase of horizontal force between slices, and the 
worst case included traffic loading on these slices; all slices to the left of this plane were 
considered to be passively resisting the horizontal force from the right and the worst case 
allowed no traffic loading on these slices. The polygons completed from each end up to 
this vertical plane gave a horizontal force HA active from the right and a horizontal force 
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HP available in passive resistance to the left. The ratio HP/HA was regarded as the factor of 
safety of the design: in the Central Harbour design this factor was about  ,1 2

1  and in 

another case a factor of 3
11  was considered satisfactory. 

The method of slices was clearly capable of extension. Non circular surfaces could 
later be considered, and the division between ‘active and passive slices’ would then simply 
be found by drawing a tangent at slope ρ to the curve of sliding. Cohesion could also be 
considered and a suitable polygon of forces quite simply found. The effect of pore-pressure 
in producing variation of effective normal stress across the sliding surface was later 
introduced. Other later definitions of factor of safety included a ratio of moments taken 
about the centre of the circle of ‘disturbing’ active forces and ‘restoring’ passive forces. 

An extensive literature5–8 has been written on the analysis of equilibrium on rupture 
surfaces. When referring to these texts the reader should be careful to note what 
assumption each writer makes about distributions of pore-pressure and of total normal 
pressure along any assumed rupture surface, and what definition is used for factors of 
safety. In each of these respects a certain variation of practice exists. 

 
Fig. 9.9 Quay in the Free Harbour as built, and Evaluation of the Stability of the Quay in the Free 

Harbour, 191 6 (After Petterson) 
 
9.4 Stability due to Cohesion Alone 

Only a few years after the original analysis of the slips at Gothenberg alternative 
analyses were developed based on cohesion alone. 
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Fig. 9.10 Cylindrical Slip Surface in Clay 

 
In Fig. 9.10 we show the section of a semi-infinite half-plane of homogeneous clay 

loaded to the right with a uniformly distributed load q and to the left with a uniformly 
distributed load p. Here we are again introducing nomenclature which will enable the 
reader to gain more ready access to Sokolovski’s Statics of Granular Media.9 No confusion 
need arise with the use of p and q in earlier chapters. The problem is analysed on the 
supposition that the clay ruptures and rotates clockwise on a cylindrical slip surface which 
will be assumed of unit length perpendicular to the section. All normal reactions on the slip 
surface pass through the centre of the slip-circle, and all tangential reactions are simply of 
magnitude k per unit length of arc. It is clear that the worst circles have centres over the 
edge which divides the loading, since any extension of q to the left or p to the right will 
reduce the loading power available for dissipation. 

Let the family of circles with centres over the edge be determined by the parameter 
α, the half-angle shown in Fig. 9.10. During a small clockwise rotation of  it is assumed 
that the total power of the descending load less the power of the rising load must equal the 
power dissipated in overcoming cohesion on the cylindrical slip surface. The distance 
moved by the centre of gravity of both moving loads is 

θ&

θα &)sin( 2
1 R so that 

,2)sin(sin)( 2
1 θαθαα && RRkRRpq =−  

i.e.,      .
sin

4)( 2α
αkpq =−    (9.9) 

This expression for (q – p) has a minimum when 
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i.e., when     αα 2tan =     (9.10) 
which is satisfied by ' . On substitution in eq. (9.9) this gives, for 
the worst case, a maximum loading differential 

4766rad1656.1 o==α

.53.5)( max kpq =−        (9.11)  
Let us apply this result to the stability of river banks. In general a river bank may be 

most inclined to fail locally, as in Fig. 9.11, with a weight W of soil slipping round the 
circular arc AB. The resultant of the cohesion k round the arc AB is then equal to a force K 
parallel to the chord AB; the weight W simply depends on the geometry of the section and 
the unit weight γ of the soil. The triangle of forces shown in Fig. 9.11 indicates a value of k 
needed just to satisfy statical equilibrium. However, when slope protection works are put 
in hand and a well drained bank or an anchored sheet-pile wall or piled quay is built over 
purely cohesive ground, the possibility of deep-seated failure places an overall restriction 
on the difference of level or of loading that can be carried. 
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Fig. 9.11 Local Failure of River Bank 

 
For example, imagine in Fig. 9.12 a wide river passing across land where there is a 

considerable depth of clay with cohesion k = 3 tonnes/m2 and of saturated weight 16 
tonnes/m3. If the difference of level between the river banks and the river bed was h, then 
(ignoring the strength of the clay for the portion BD of the sliding surface,  
 

 
Fig. 9.12 Deep-seated Failure of River Bank 

 
and the weight of the wedge BDE) for an approximate calculation we have 

hhphq w 0.1and6.1 === γ  when the river bed was flooded or 0=p when the river bed 
was dry giving in the worst case .6.1)( hpq =−  We also have from eq. (9.11) 

2
max tonnes/m6.1653.5)( ==− kpq      (9.12)  

so that    ,m10
6.1
6.16
=≤h say  

which gives one estimate of the greatest expected height of the river banks. If the river 
were permanently flooded the depth of the river channel could on this basis be as great as  

m.6.27
6.0
6.16
≅      (9.13)  

An extensive literature has been written on the analysis of slip-circles where the 
soil is assumed to generate only cohesive resistance to displacement. We shall not attempt 
to reproduce the work here, but instead turn to the theory of plasticity which has provided 
an alternative approach to the solution of the bearing capacity of purely cohesive soils. 
 
9.5 Discontinuity Conditions in a Limiting-stress Field 
 In this and the next section we have two purposes: the principal one is to develop 
an analysis for the bearing capacity problem, but we also wish to introduce Sokolovski’s 
notation and provide access to the extensive range of solutions that are to be found in his 
Statics of Granular Media. In this section we concentrate on notation and develop simple 
conditions that govern discontinuities between bodies of soil, each at some Mohr—
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Rankine limiting stress state: in the next section we will consider distribution of stress in a 
region near the edge of a load — a so-called ‘field’ of stresses that are everywhere limiting 
stresses. 

 
Fig. 9.13 Two Rectangular Blocks in Equilibrium with Discontinuity of Stress 

 
In Fig. 9.13 we have a section through two separate rectangular blocks made of 

different perfectly elastic materials, a and b, where material b is stiffer than a. The blocks 
are subject to the boundary stresses shown, and if a'σ and b'σ  are in direct proportion to 
the stiffnesses Ea and Eb then the blocks are in equilibrium with compatibility of strain 
everywhere. However, the interface between the blocks acts as a plane of discontinuity 
between two states of stress, such that the stress c'σ across this plane must be continuous, 
but the stress parallel with the plane need not be. 

In a similar way we can have a plane of discontinuity, cc, through a single perfectly 
plastic body such as that illustrated in Fig. 9.14(a). Just above the plane cc we have a 
typical small element a experiencing the stresses ),'( aca τσ and ),'( cac τσ which are 
represented in the Mohr’s diagram of Fig. 9.14(b) by the points A and C respectively on 
the relevant circle a. 
  Just below the plane cc the small element b is experiencing the stresses 

),'( bcb τσ and ),'( cbc τσ which are represented by the points B and C respectively on the 
relevant Mohr’s circle b. In order to satisfy equilibrium we must have 

cbbccaac ττττ ≡≡≡ but as before there is no need for a'σ  to be equal to .'bσ  Since the 
material is perfectly plastic there is no requirement for continuity or compatibility of strain 
across the plane cc. 

We can readily obtain from the respective Mohr’s circles the stresses acting on any 
plane through the separate elements a and b; and in Fig. 9.14(c) the principal stresses are 
illustrated. The key factor is that there is a marked jump in both the direction and 
magnitude of the major (and minor) principal stresses across the discontinuity — and this 
will be the essence of the plastic stress distributions developed in the remainder of this 
chapter. This will be emphasized in all the diagrams by showing the major principal stress 
in the form of a vector, and referring to it always as 'Σ . 
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Fig. 9.14 Perfectly Plastic Body Containing Stress Discontinuity 

 
In Fig. 9.15(a) we see a section through a plane body of soil across which there act 

stress components n normal and τ tangential to the section. These components define a 
point P in the stress plane of Fig. 9.15(b), in which we see also the Mohr—Rankine 
limiting lines 

,ρtan'στ += k  
intersecting the axis at O where OJ = k cot ρ = H. It proves convenient to transform all 
problems to equivalent problems of either perfectly frictional or perfectly cohesive soil. So 
in cases where Sokolovski introduces an additional pressure H as well as the stress 
components n and t, and in Fig. 9.15(c) the equivalent stress (remembering that the 
symbols p and q are used by Sokolovski and in this chapter only for distributed loading on 
some planes) '  is such that 

0ρ ≠

p tp =δsin'  and ).(cos' Hnp +=δ  
In Fig. 9.16(a) there are seen to be two alternative circles of limiting stress through 

the point P. One circle has centre Q+ and the other has centre Q–. The line OP cuts these 
circles as shown in Fig. 9.16(a) and the angle ∆ is such that 

0).ρ(
ρsin

sinsin ≠=
δ∆      (9.14)  
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We must be careful about the sign conventions associated with the definition of ∆. The 
angle of friction ρ is a material constant and is always positive (or zero), so that the sign of 
∆ is always the same as δ. All angles in Mohr’s diagram are measured positive in an 
anticlockwise direction so that positive δ and ∆ are associated with positive shear stress τ; 
in particular when P is below the 'σ -axis, ∆<0. 

Use of this angle ∆ was suggested by Caquot and was then brought in to the second 
edition of Statics of Granular Media.  
 

 
Fig. 9.15 Sokolovski’s Equivalent Stress 

 
Another symbol that figures extensively in the book is ,1κ ±=  in such contexts as 
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     (9.15) 

This convenient notation permits Sokolovski to write general equations, and to distinguish 
between a maximal limiting-stress state when 1κ +=  and a minimal limiting-stress state 
when  These alternative states can exist cheek by jowl, facing each other across a 
discontinuity on which the stress components n and t act as in Fig. 9.16; this case 
represents the biggest allowable jump or change in stress across the discontinuity. 

.1κ −=
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Fig. 9.16 Maximal and Minimal Limiting Stresses 

 
The first condition that applies to these limiting stress states is that the shift in 

centre of the stress circles must satisfy the condition 

)sin(
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δ
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σ
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−
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=
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+

∆
∆     (9.16) cf. Sokolovski (2.42) 

A second condition is that the change in inclination of the direction of the major principal 
stress  also depends on ∆. In Fig. 9.16(b) we define the anticlockwise angles* from the 
direction of the discontinuity to the directions of 

'Σ
'Σ  on either side as −λ and +λ . The general 

condition is 

πδπλ m∆ +−+−= κ
2

)κ1(2      (9.17) cf. Sokolovski (1.17) 

where m is an integer, chosen to agree with the sign convention for λ. 
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∆
2  have we1κ
2  have we1κFor

 

where the + sign is associated with positive shear (δ >0) and the – sign is associated with 
negative shear (δ<0). The second condition applying to the discontinuity is therefore 

∆−±=− +− 2
πλλ        (9.18)  

 
 
 
* This is a minor departure from Sokolovski who measures the clockwise angle from 'Σ  to the discontinuity: it makes no 
difference to the mathematical expressions but means all angles have a consistent sign-convention.  
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Fig. 9.17 Limiting-stress Circles for Purely Cohesive Material 

 
If we consider instead the case of a perfectly cohesive soil (ρ=0) we have the 

situation of Fig. 9.17 for which this second condition remains valid. However, the first 
condition of eq. (9.16) must be expressed as 

)sin(
)sin(

'
'

δ
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σ
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so that as )eachand',','and(0 ∞→→ −+ Hpσσδ  it can be expanded to give  

.cos2 ∆kss =− −+       (9.19) cf. Sokolovski (4.32)  
We also have to redefine ∆ in the form  

0).ρ(sin ==
k
t∆       (9.20)  

 
Fig. 9.18 Planes of Limiting-stress Ratio 

 
We will be dealing with a number of discontinuities all at different inclinations, so 

it becomes important to have a pair of fixed reference axes. Sokolovski uses Cartesian 
coordinates x horizontal and positive to the left, and y vertical and positive downwards 
which is consistent with our sign convention for Mohr’s circle (appendix A). The angle φ 
is defined to be the anticlockwise angle between the x-axis and the direction of major 
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principal stress  in Fig. (9.18). This angle will play a large part in the remainder of this 
chapter, and should not be confused with its widespread use in the conventional definition 
for the angle of friction. 

'Σ

In Fig. 9.18(a) we have a point P in a perfectly plastic body in a state of limiting 
stress, with appropriate Mohr’s circle in Fig. 9.18(b). From this we can establish the 
direction of the major principal stress 'Σ  and the directions r1 and r2 of the planes of 
limiting stress ratio. The angle between these is such that )2ρ4( −= πε and this agrees 
with the definition in eq. (9.3) in §9.2 on Coulomb’s analysis. 

In order to define a limiting-stress state in soil of given properties (k, ρ) only two 
pieces of information are needed: one is the position of the centre of the stress circle, either 

'σ or s, and the other is the direction of major principal stress relative to the horizontal x-
axis described by φ. Across a discontinuity the change of the values of these data is simply 
related to ∆, which is defined by eqs. (9.14) and (9.20). 
 
9.6 Discontinuous Limiting-stress Field Solutions to the Bearing 
Capacity Problem 
  

We can now turn to the bearing capacity problem. Previously, in §9.4 when we 
considered the possibility of circular rupture surfaces, we only attempted to specify the 
distribution of stress components across the sliding surface. In this section we will be 
examining the same problem on the supposition that there are discontinuities in the 
distribution of stress in the soil near a difference of surface loading, and we will fully 
specify limiting-stress states in the whole of the region of interest. 

We shall simplify the problem by assuming the soil is weightless ),0( =γ  but we 
will see later that this is an unnecessary restriction and that the analysis can be extended to 
take account of self-weight. The cases of (a) purely frictional and (b) purely cohesive soils 
need to be considered separately, and the latter, which is easier, will be taken first. 
 
9.6.1. Purely cohesive soil )0,0ρ( == γ  
 Figures 9.19(a), 9.20(a), and 9.21(a) show a section of a semiinfinite layer of 
uniform soil supporting a known vertical stress p applied to the surface along the positive 
x-axis. The problem is to estimate the maximum vertical stress q that may be applied along 
the negative x-axis. In the limiting case the stress p must be a minor principal stress so that 
the associated major principal stress 'Σ  must be in a horizontal direction ).0( =φ In 
contrast, the stress q will be itself a major principal stress in the vertical direction 

),2( πφ = so that somewhere in the vicinity of the y-axis we must insert one or more 
discontinuities across which the value of φ can change by π/2. 

If we have n discontinuities it is simplest to have n equal changes of φ, i.e., 
)2/( nπδφ += at each discontinuity. With the boundary conditions of Fig. 9.19 we shall be 

concerned with negative shear, i.e., ,0≤∆ so that we select from eq. (9.18) 

∆−−=−=− +−+− 2
)()( πλλφφ   

and for each discontinuity 
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22222
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πππδφπφφπ    (9.21) 
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Fig. 9.19 Limiting-stress Field with One Discontinuity for Cohesive Soil 

 
Fig. 9.20 Limiting-stress Field with Soil Discontinuities for Cohesive soil 
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Substituting in eq. (9.19) we have for the shift of Mohr’s circles  
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k
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k∆kss ==⎟
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⎜
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The case of a single discontinuity )1( =n is fully illustrated in Fig. 9.19, for which 0=∆  
and the two stress circles have centres separated by a distance 2k. The corresponding value 
of q is   .4kp +
 
For the case of two discontinuities (n = 2) in Fig. 9.20, 4π−=∆ and the three stress circles 
have centres spaced √(2)k apart giving  .83.4)2(22max kpkkpq +=√++=

When n becomes large, Fig. 9.21, it is convenient to adopt the differentials from 
eqs. (9.21) and (9.22)  

δφδφδ

δφπ

kksss

∆

2sin2and
2

==−=

+−=

−+

 

 
Fig. 9.21 Limiting-stress Field with n Discontinuities for Cohesive Soil 

 
which are illustrated in Fig. 9.22(a). Integrating, we find that the total distance apart 
between the centres of the extreme stress circles becomes 

kks πφ
π

== ∫∫
2

0

d2d  
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leading to .14.52max kpkkpq +=++= π  

 
Fig. 9.22 Shift of Limiting Stress Circles for Small Change of φ 

 
9.6.2 Purely frictional soil )0,0( == γk  

Figures 9.23(a), 9.24(a), and 9.25(a) illustrate successive solutions to the same 
problem for n= 1, n=2, and large n except that the soil is now purely frictional. As before, 
we shall have a change of φ of (π/2n) at each discontinuity, and negative shear  so 
that 

)0( ≤∆
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22
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∆ πδφπ  

This must be substituted into the appropriate equation, (9.16), to give 
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and introducing ρsinsinsin ∆=δ we obtain  
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For a single discontinuity when 0,1 === ∆n δ and the two stress circles are spaced so that 
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Fig. 9.23 Limiting-stress Field with One Discontinuity for Frictional Soil 

 
in addition 
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To take a specific example, if ρ = 30° then .9max pq =  
For two discontinuities when 

ρsin)2/1(sin,4,2 −=−== δπ∆n  
and on substitution in eq. (9.23) we can obtain 
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Fig. 9.24 Limiting-stress Field with Two Discontinuities for Frictional Soil 

 
For  this gives  o30ρ = .7.14max pq =

When n is large we adopt the differential form as before. From eq. (9.16) 
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Integrating, we find that the extreme stress circles are related by 
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For ρ=30° this gives  .19max pq ≅
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Fig. 9.25 Limiting-stress Field with n Discontinuities for Frictional Soil 

 
 In the six solutions presented above, each contains regions of unform stress 
separated by strong discontinuities. The change of pressure across each discontinuity is 
characterized by the change of the major principal stress '.Σ  Essentially, in this analysis we 
have replaced the simple idea of one discontinuity of displacement around the surface of a 
slip circle, by a number of discontinuities of stress which allow successive rotations and 
changes in magnitude of the major principal stress. 
  
9.7 Upper and Lower Bounds to a Plastic Collapse Load 
 

We now have two strikingly different approximate solutions to the problem of 
bearing capacity of cohesive ground. In §9.4 our solutions are based on what can be called 
kinematically admissible velocity fields: the mechanism of sliding blocks is compatible 
with the imposed displacements and the power of the loads moving through the 
displacements equals the plastic power of dissipation in the cohesive ground. The general 
solution 

α
α
2sin

4)( kpq =−       (9.9 bis) 

allows us to take for example in Fig. 9.10 
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kkpq 28.62)(
2

==−= ππα  

or equally to find a minimum at 
.53.5)('4766 kpq =−= oα  

In contrast in §9.6 we developed solutions based on what can be called statically 
admissible stress fields: the distributed stresses are in equilibrium with the applied loads 
and nowhere in the interior do they exceed the yield limit. The distribution with a single 
discontinuity Fig. 9.19 gave us 

;4)( kpq =−  
with two discontinuities Fig. 9.20 gave us 

,83.4)( kpq =−  
and a fan of many discontinuities Fig. 9.21 gave us 

.14.5)( kpq =−  
These five estimates of the bearing capacity of cohesive ground can be brought into focus 
if we take advantage of certain theorems established by Prager and his co-workers.10 Using 
some virtual work calculations and the normality condition for perfectly plastic associated 
flow, they showed that for perfectly plastic material solutions based on kinematically 
admissible velocity fields must be upper bounds to the actual collapse loads, whereas those 
based on statically admissible stress fields must be lower bounds. Hence we estimate that 
the actual bearing capacity would lie in the range max)( pq −

.48.414.5)(53.528.6 max kkkpqkk >>≥−≥>  
The calculations based on slip circles give us loads that are certainly powerful 

enough to cause failure in the assumed mechanism, and could well exceed the loads that 
we would calculate if we were able to think of another more subtle mechanism in which 
the surface could move down with less power being dissipated in the ground. The 
calculations based on stress distributions give us loads that the ground could certainly carry 
in the assumed manner, and these loads could well be exceeded if we were to think of a 
more subtle distribution by which we could pack a little more stress in the ground. To put 
the matter even more succinctly, the slip-circle calculations would be all right for 
demolition experts who wanted to be sure to order enough load to cause a failure; but civil 
engineers who want to be sure of not overloading the ground ought to think first of stress 
distributions. 

Of course, to say this is to oversimplify the matter. The upper and lower bound 
theorems are established only for perfectly plastic materials: the present uncertainty about 
the flow rule and about the instability of soil that comes to fail on the ‘dry side’ of critical 
states makes it possible only to draw inferences. However, when we recall how slight are 
the factors of safety commonly used in slope design it is clearly wise to pay close attention 
to calculations that appear to offer us statically admissible stress distributions. The study of 
the solutions by the method of characteristics that are set out by Sokolovski becomes 
particularly attractive. 

In the next section we briefly consider the simple effects of bodyweight in 
horizontal layers of soil of differing properties: in a later section we discuss Sokolovski’s 
general method for analysis of limiting-stress fields with body-weight acting throughout 
the field.  
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9.8 Lateral Pressure of Horizontal Strata with Self Weight )0ρ,0( >>γ  

We illustrate the application of Sokolovski’s method to the case of Fig. 9.26(a) in 
which two horizontal layers of frictional soil with different properties are shown to be 
retained by a smooth vertical wall. (We have chosen a simple problem in order to ease the 
introduction of further unfamiliar symbols and illustrate the nature of  

 
Fig. 9.26 Limiting Lateral Pressure on Retaining Wall: Active Case 

 
Sokolovski’s methods; the same solution could be obtained more directly by the 
conventional method due to Rankine.) The upper layer has thickness h1 and material 
properties γ1, ρ1 and H1, while the lower layer has properties γ2, ρ2 and H2 and is of 
considerable thickness, extending below the base of the wall. A surcharge consisting of a 
vertical load  is assumed to act on the surface; so that Sokolovski’s equivalent stress 
on the surface  is simply 

0≥p
)0( =y .' 1Hpp +=   

At a depth y below the surface the vertical stress will be: 
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    (9.24) 

In the minimal limiting stress state of active pressure on the wall the major principal stress 
 will be vertical 'Σ ),2/(πφ = and the appropriate Mohr’s circle for a point at depth y in the 

upper layer is shown in Fig. 9.26(b). 
 From the geometry of the figure, the minor principal stress x'σ is related to y'σ by 
the expression 
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We have an exactly similar situation for the lower layer, so that we can express the 
horizontal effective pressure experienced by the retaining wall in the active case as: 
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    (9.26)  

The actual total pressure on the wall will include the pore-pressure; for fully 
saturated soil in the absence of any groundwater flow the pore-pressure yu ww γ= will 
increase linearly with depth. The values of γ1 and γ2 for the soil must take into account any 
buoyancy effects. 
 

 
Fig. 9.27 Limiting Lateral Pressure on Retaining Wall: Passive Case 

 
The passive case is illustrated in Fig. 9.27(a) where the limiting stress is now 

maximal. The major principal stress is horizontal (φ = 0); and in the related Mohr’s 
diagram x'σ and y'σ have interchanged their positions from the active case. Equation (9.25) 
is directly replaced by 
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so that for the passive case we have 
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Using Sokolovski’s elegant notation we can combine eqs. (9.26) and (9.28) and write 
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where 1κ −=  gives the active case 
and     1κ +=  gives the passive case. 
 
In each layer the lateral pressure varies linearly with depth and the distributions are plotted 
in Fig. 9.28. The slopes 
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depend only on the local value of γ and ρ. So change of cohesion k or surcharge p would 
only change the datum of the pressure-distribution line (as would a change in pore pressure 
uw): it requires a change of density γ or friction ρ to rotate the line. 

For the construction of Fig. 9.28 it has been assumed that the groundwater table is 
at the surface so that the soil is fully saturated, and the submerged bulk densities must be 
used for calculation of 

 
Fig. 9.28 Limiting Lateral Pressure Distribution 

  
effective stresses. The following values have been adopted: 1hp wγ= and for the upper 
layer 

o306ρ.,.,tan,0,' 13
1

1
2

11 ===== πεγγ eiHw  
and for the lower layer 

'.36223945.0ρ.,.,tan,,' 29
4

2
2

124
3

2
o===== eihH ww εγγγ  

Across the interface there is, of course, no sudden jump in the value of the vertical 
effective pressure y'σ  (although its derivative is not continuous); figuratively speaking, if 
an observer inserted the palm of his hand horizontally into the soil he could not detect 
where the interface was or whether the soil was in a maximal or minimal stress state. 
 However, just above the interface the lateral effective pressure would be 



 191 

1κforor 1,κfor6'i.e.,

,)3)(0('

13
2

1

κ
11

−=+==

++=

hh

hh

wwx

wwx

γγσ

γγσ
 

  
whereas just below 
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An observer who was able to insert the palm of his hand vertically could detect the 
presence of the interface and the state of the soil. 

If a greater value of H2, for example, H2 = 2γwh1, had been appropriate, we would 
have required 19

2' hwx γσ −= to bring the soil just below the interface into a minimal limiting 
state. But since the effective stress between the soil and the wall cannot be tensile, 
Sokolovski introduces the restriction 0' ≥xσ that and concludes that where the 
mathematical expressions would lead to a negative value of x'σ the soil cannot be in a 
limiting state. 

In Fig. 9.28 the distribution of pore-pressure uw has been drawn to the left of the 
vertical axis of y, with the result that the total lateral pressure at any depth is readily 
obtained. 

Clearly this method can be extended to any number of strata, and can be adapted to 
take account of other groundwater conditions, or a particular layer that is considered to be 
purely cohesive. 
 
9.9 The Basic Equations and their Characteristics for a Purely 
Cohesive Material 
 

In this section we will be covering much of the material set out in Sokolovski’s 
Statics of Granular Media §3 and §17, but in detail our treatment will be closer to that 
presented by Hildebrand.11

When we consider the two-dimensional field of stress acting on any material we 
have two differential equations of equilibrium. For the reference axes of Fig. 9.29 these 
are: 
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     (9.3) 

which can be obtained directly by resolving the forces acting on the element, and using the 
identity of complementary shear stresses ).( yxxy ττ =  We only require one further equation 
to make the three unknowns yxyx ',,' στσ determinate. 
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Fig. 9.29 Stresses Acting on Element of Soil 

 
To take a simple example Fig. 9.30(a), consider the calculation of shear stress in a 

uniform horizontal cantilever of length l, of rectangular section with breadth b and depth d, 
and carrying a concentrated load W at its free end. If we assume the linear distribution of 
axial stress x'σ  across a vertical section (at a distance x from the 

 

 
Fig. 9.30 Stress Distributions for Loaded Cantilever 

 
root of the cantilever) in Fig. 9.30(b), then by taking moments we have 
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This equation is the third one necessary to make the problem completely determinate and 
we have no further freedom to make other specifications. 

The first equilibrium equation (9.30a) gives 
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and integrating with the boundary condition 0=τ at 2dy ±=  we obtain the familiar 
parabolic distribution for shear stress 
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which is illustrated in Fig. 9.30(c). (The second equilibrium equation leads to ;' yy γσ = in 
normal circumstances this would be negligible compared with the values of x'σ and xyτ ) 

It is significant that this result is independent of the actual material of the beam 
whether it is steel, concrete, wood, or plastic so long as the assumption of the linear 
distribution of x'σ  remains valid. The material properties will only influence the resulting 
elastic strains of the cantilever. 
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Fig. 9.31 Characteristic Directions for Cohesive Soil 

 
In the same way, in the theory of two-dimensional limiting-stress fields as soon as 

we postulate that the stresses shall be limiting everywhere we have made the problem 
completely determinate. We now choose to concentrate on purely cohesive materials, so 
that the condition of limiting stress is given by 

222
4
1 )''( kxyyx =+− τσσ      (9.33) 

which is the equation to the Mohr’s circle of Fig. 9.31. 
It is convenient to express this in an alternative form by the parameters s and φ 

(which respectively specify the centre of Mohr’s circle and the direction of major principal 
stress) as follows: 
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Substituting these into the equilibrium eqs. (9.30) we have 
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    (9.35) 

provide four equations for the four unknowns 
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The solution of the problem of limiting-stress distributions in purely cohesive materials lies 
in this set of four equations. Leaving aside the special case of finite discontinuity in values 
of s and φ we consider small regions or zones in which there is a continuous variation in 
values of these parameters. At a typical point (x, y) in Fig. 9.3 1(c) we have data of (s,φ) 
while at an adjacent point )d,d( yyxx ++  the data are ).d,d( φφ ++ ss  If we know values 
of dx, dy, ds, dφ can we find values of ,,,, yxysxs ∂∂∂∂∂∂∂∂ φφ and vice versa? If we 
can, then a reasonable approximation to the values of s and φ in a region surrounding the 
two points can be obtained by extrapolation. To decide whether this is possible we must 
examine the equations in detail. 

In order to calculate the partial derivatives from given values of dx, dy, ds, and dφ 
we will need to invert the matrix of coefficients on the left-hand side of equations (9.35). 
This inversion will not be possible when the associated determinant is zero, i.e., when 
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Clearly for the directions given by { })4(tandd πφ ±=xy the determinant is zero; 
and we shall have no prospect of finding partial derivatives if the values of ds and dφ that 
are adopted happen to come from adjacent points in one of these characteristic directions. 
It is necessary to study conditions along the characteristics. 

Sokolovski multiplies the first equation of the set (9.35) by { },)4(sin πφ ± the 
second equation by { )4(cos }πφ ±−  and adds the results to obtain (after some 
manipulation) 
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He then introduces two new parameters ξ and η where 
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Partial differentiation of these parameters and substitution into eq. (9.37) leads to 
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Along the β-characteristic in Fig. 9.31(c), 
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we can re-write the first equation as 
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which leads to the important result that 

.
4

tan
d
dconstant

2 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +==+

−
=

πφφγξ
x
y

k
ys     (9.40)  

Similarly, along the α-characteristic 
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the second equation leads to 
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Although we cannot calculate the partial derivatives of s and φ we do know the 
total differentials of ξ and η along the characteristics. In the next sections we will show 
how this remarkable property of the characteristics may be used to solve problems of 
limiting-stress fields in a cohesive soil.  
 
9.10 The General Numerical Solution 

We will explain, in general terms, the development of the numerical solution for 
one simple example that involves a body of purely cohesive soil with self weight, in a 
minimal stress state, below a horizontal boundary Ox on which a vertical surcharge causes 
an unevenly distributed normal pressure. In Fig. 9.32(a) at points A00 and A11 on the 
boundary the normal pressures are p0 and p1, where  

 
Fig. 9.32 Mapping of Characteristics for Numerical Solution 

 
p0<p1. Just below each of these points the states of stress in the soil are defined by  
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From these values we calculate 
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in Fig. 9.32(b) we display the plane of characteristics (ξ, η) on which we can plot points 
A00 and A11. 

Through A00 we draw the characteristic ,const. 0ηη == through A11 we draw the 
characteristic ,const. 1ξξ == and these intersect in the point A10. The point A10 is such that 
and therefore 
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and the stress parameters s and φ at the point A10 are clearly 
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So the consequence of the property of the characteristics (that total differentials are known 
along them) is that we now know exactly what the stresses are at this point A10 in the soil 
below the loaded surface. The remaining numerical problem is simply one of mapping; to 
find where the point A10 is on the (x, y) plane — that is to map the sheet A11A10A00 from 
the (ξ, η) plane on to the (x, y) plane. 
 Sokolovski gives an approximate method that is quite effective for mapping out 
these points. A table is drawn up where each row and each column correspond to a 
characteristic. The table resembles the construction of lines on the (ξ,η) plane in Fig. 
9.32(b). Diagonally across the table the values given to parameters (x, y, s,φ) are those for 
the appropriate positions on the boundary. At two points 1 and 2 within the table let the 
values (x1, y1, s1,φ1) and (x2, y2, s2,φ 2) be known. To find the values at the next successive 
point 3, replace the differential equations by recurrence formulae  
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    (9.45) 

and hence the values of (x3, y3, s3,φ3) may be determined. As this programme of calculation 
is followed so successive compartments of the table are filled. The numbers in each 
compartment fix the position of one node in the pattern of characteristics shown in Fig. 
9.32(a) and the state of stress at that node. 

It is clear that although the above paragraphs only cover one example, the same 
method will apply to soil with internal friction, with or without self weight: of course 
different recurrence formulae will be appropriate for different problems12 and special 
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formulae will have to be developed to meet special difficulties at some boundaries, but for 
all such developments direct reference should be made to Sokolovski’s texts. 
 
9.11 Sokolovski’s Shapes for Limiting Slope of a Cohesive Soil 

We now consider Sokolovski’s use of integrals of the equations of limiting 
equilibrium in regions throughout which either ξ or η has constant values. We consider 
only regions where ξ is constant, since those with η constant are the exact converse and the 
families of characteristics become interchanged. In the regions where ξ is constant 
everywhere and η varies then 
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and the one constant ξ0 applies to every β-characteristic. The family of α-characteristics for 
which )4tan(dd πφ −= xy  must become a set of straight lines since 
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so that φη d2d −=  and φ will be constant along each α-characteristic. The equation of any 
α-characteristic becomes 
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where (x(φ), y(φ)) are the coordinates of some fixed point on the characteristic. 

For the special case when all α-characteristics pass through one point we can 
choose it as the origin of coordinates so that ;0)()( ≡≡ φφ yx  and the family of α-
characteristics is simply a fan of radial straight lines. The curved β-characteristics having 
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4
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are then segments of concentric circles orthogonal to these radii. 
Solutions to specific problems can be constructed from patchwork patterns of such 

regions, as we see for the general case of the limiting stability of a slope of a cohesive soil 
shown in Fig. 9.34 (and as we saw for the case of high-speed fluid flow in Fig. 1.8). The 
essential feature of these solutions is that the values of one parameter (ξ in Fig. 9.34) 
which are imposed at one boundary (OA0) remain unchanged and are propagated through 
the pattern and have known values at a boundary of interest (0A3).  
 

 
Fig. 9.33  Limiting Shape of Slope in Cohesive Soil 

 
A limiting shape for a slope in cohesive soil is shown in Fig. 9.33 and we begin by making 
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a simple analysis of conditions along the slope, which forms the boundary of interest. 
Above O there is a vertical face of height γkh 2= for which the soil (of self-weight γ and 
cohesion k) is not in a limiting state. At any point on the curved slope the major principal 
stress is at an angle φ equal to the angle β of the slope at that point, and of magnitude 2k so 
that the values of the parameters s and φ along the curve are 

 βφ == andks        (9.49)  
In Fig. 9.33 we have taken the slope at O to be vertical so that ,20 πββ == but in 

Fig. 9.34 we show a generalized slope problem where the weight of soil above the line 
OA0 is replaced by a uniformly distributed surcharge p, and .20 πβ ≠  Below the line OA0 
in Fig. 9.34 is a region A0OA1 dependent on the conditions along the boundary OA0. It is a 
region of a single state (ξ0, η0) with straight parallel characteristics in each direction and 
with 
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The shape of the slope must be such that retains the value given in eq. (9.50), and that the 
conditions of eq. (9.49) are satisfied. 
 

 
Fig. 9.34  General Limiting Shape of Slope in Cohesive Soil (After Sokolovski) 

 
We have, therefore, 
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But at any point on the slope βtandd xy = so that substituting for y from eq. (9.51) we find 
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which can be integrated to give 
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The limiting slope must therefore have as its equation  
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and have a horizontal asymptote 
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Various slope profiles corresponding to different values of β0 are shown in Fig. 9.35 which 
is taken from Fig. 178 of the earlier translation of Sokolovski’s text. 

In the particular case of Fig. 9.33 when 20 πβ =  the slope equation becomes 
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Fig. 9.35 Limiting Shapes of Slope in Cohesive Soil for Various Values of Surcharge  

(After Sokolovski) 
 
having a horizontal asymptote .γπky =  Thus the maximum difference in height between 
the left and right hand levels of Fig. 9.33 is ,)2( γπ k+ which is the maximum difference 
predicted in §9.7. 
 
9.12 Summary  

At this stage of the book we are aware of the consequences of our original decision 
to set the new critical state concept among the classical calculations of soil mechanics. Our 
new models allow the prediction of kinematics of soil bodies, and yet here we have 
restricted our attention to the calculation of limiting equilibrium and have introduced 
Sokolovski’s classical exposition of the statics of soil media. The reason for this decision 
is that it is this type of statical calculation that at present concerns practical engineers, and 
the capability of the new critical state concept to offer rational predictions of strength is of 
immediate practical importance. In this chapter we have reviewed the manner of working 
of the classical calculations in which the only property that is attributed to soil is strength. 
We hope that this will give many engineers an immediate incentive to make use of the new 
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critical state concept, and perhaps in due course become actively interested in the 
development of new calculations of deformation that the concept should make possible.  
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