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Granta-gravel  
 
 
5.1 Introduction  

Previous chapters have been concerned with models that are also discussed in many 
other books. In this and subsequent chapters we will discuss models that are substantially 
new, and only a few research workers will be familiar with the notes and papers in which 
this work was recently first published. The reader who is used to thinking of 
‘consolidation’ and ‘shear’ in terms of two dissimilar models may find the new concepts 
difficult, but the associated mathematical analysis is not hard.  

The new concepts are based on those set out in chapter 2. In §2.9 we reviewed the 
familiar theoretical yield functions of strength of materials: these functions were expressed 
in algebraic form F = 0 and were displayed as yield surfaces in principal stress space in 
Fig. 2.12. We could compress the work of the next two chapters by writing a general yield 
function F=0 of the same form as eq. (5.27), by drawing the associated yield surface of the 
form shown in Fig. 5.1, and by directly applying the associated flow rule of §2.10 to the 
new yield function. But although this could economically generate the algebraic 
expressions for stress and strain-increments it would probably not convince our readers 
that the use of the theory of plasticity makes sound mechanical sense for soils. About 
fifteen years ago it was first suggested1 that Coulomb’s failure criterion (to which we will 
come in due course in chapter 8) could serve as a yield function with which one could 
properly associate a plastic flow: this led to erroneous predictions of high rates of change 
of volume during shear distortion, and research workers who rejected these predictions 
tended also to discount the usefulness of the theory of plasticity. Although Drucker, 
Gibson, and Henkel2 subsequently made a correct start in using the associated flow rule, 
we consider that our arguments make more mechanical sense if we build up our discussion 
from Drucker’s concept3 of ‘stability’, to which we referred in §2.11.  

 
Fig. 5.1 Yield Surface 

 
The concept of a ‘stable material’ needs the setting of a ‘stable system’: we will 

begin in §5.2 with the description of a system in which a cylindrical specimen of ideal 
material is under test in axial compression or extension. We will devote the remainder of 
chapter 5 to development of a conceptual model of an ideal rigid/plastic continuum which 
has been given the name Granta-gravel. In chapter 6 we will develop a model of an ideal 
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elastic/plastic continuum called Cam-clay4, which supersedes Granta-gravel. (The river 
which runs past our laboratory is called the Granta in its upper reach and the Cam in the 
lower reach. The intention is to provide names that are unique and that continually remind 
our students that these are conceptual materials – not real soil.) Both these models are 
defined only in the plane in principal stress space containing axial-test data: most data of 
behaviour of soil-material which we have for comparison are from axial tests, and the 
Granta-gravel and Cam-clay models exist only to offer a persuasive interpretation of these 
axial-test data. We hope that by the middle of chapter 6 readers will be satisfied that it is 
reasonable to compare the mechanical behaviour of real soil-material with the ideal 
behaviour of an isotropic-hardening model of the theory of plasticity. Then, and not until 
then, we will formulate a simple critical state model that is an integral part of Granta-
gravel, and of Cam-clay, and of other critical state model materials which all flow as a 
frictional fluid when they are severely distorted. With this critical state model we can clear 
up the error of the early incorrect application of the associated flow rule to ‘Coulomb’s 
failure criterion’, and also make a simple and fundamental interpretation of the properties 
by which engineers currently classify soil. 

The Granta-gravel and Cam-clay models only define yield curves in the axial-test 
plane as shown in Fig 5.2: this curve is the section of the surface of Fig. 5.1 on a 
diametrical plane that includes the space diagonal and the axis of longitudinal effective 
stress o (similar sections of Mises’ and Tresca’s yield surfaces in Fig. 2.12 would show 
two lines running parallel to the x-axis in the xz-plane). The obvious features of the pear-
shaped curve of Fig. 5.2 are the pointed tip on the space diagonal at relatively high 
pressure, and the flanks parallel to the space diagonal at a lower pressure. A continuing 
family of yield curves shown faintly in Fig. 5.2 indicates occurrence of stable isotropic 
hardening. Our first goal in this chapter is to develop a model in the axial-test system that 
possesses yield curves of this type. 
 

 
Fig. 5.2 Yield Curves 

 
5.2 A Simple Axial-test System  

We shall consider a real axial test in detail in chapter 7: for present purposes a 
much simplified version of the test system will be described with all dimensions chosen to 
make the analysis as easy as possible. 
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Fig. 5.3 Test System 

 
Let us suppose that we enter a laboratory and find a specimen under test in the 

apparatus sketched in Fig. 5.3. We first examine the test system and determine the current 
state of the specimen, which is in equilibrium under static loads in a uniform vertical 
gravitational field. We see that we may probe the equilibrium of the specimen by slowly 
applying load-increments to some accessible loading platforms. We shall hope to learn 
sufficient about the mechanical properties of the material to be able to predict its behaviour 
in any general test.  

The specimen forms a right circular cylinder of axial length l, and total volume v, 
so that its cross-sectional area, a = v/l. The volume v is such that the specimen contains 
unit volume of solids homogeneously mixed with a volume (v – 1) of voids which are 
saturated with pore-water and free from air.  

The specimen stands, with axis vertical, on a pedestal containing a porous plate. 
The porous plate is connected by a rigid pipe to a cylinder, all full of water and free of air. 
The pressure in the cylinder is controlled by a piston at approximately the level of the 
middle of the specimen which is taken as datum. The piston which is of negligible weight 
and of unit cross-sectional area supports a weight X1 so that the pore-pressure in the 
specimen is simply uw=X1.  

A stiff impermeable disc forms a loading cap for the specimen. A flexible, 
impermeable, closely fitting sheath of negligible thickness and strength envelops the 
specimen and is sealed to the load-cap and to the pedestal. The specimen, with sheath, 
loading cap, and pedestal, is immersed in water in a transparent cell. The cell is connected 
by a rigid pipe to a cylinder where a known weight X2 rests on a piston of negligible weight 
and unit cross-sectional area. The cell, pipe, and cylinder are full of water and free from 
air, so that the cell pressure is simply 2Xr =σ  which is related to the same datum as the 
pore-pressure. The cell pressure is the principal radial total stress acting on the cylindrical 
specimen. 

A thin stiff ram of negligible weight slides freely through a gland in the top of the 
cell in a vertical line coincident with the axis of the specimen. A weight X3 rests on this 
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ram and causes a vertical force to act on the loading cap and a resulting axial pressure to 
act through the length of the specimen. In addition, the cell pressure rσ  acts on the loading 
cap and, together with the effect of the ram force X3, gives rise to the principal axial total 
stress lσ  experienced by the specimen, so that  

).(3 rlaX σσ −=  
Hence, three stress quantities uw, rσ and ),( rl σσ − and two dimensional quantities v, 

and l, describe the state of the specimen as it stands in equilibrium in the test system.  
 
5.3 Probing  

The test system of Fig. 5.3 is encased by an imaginary boundary which is 
penetrated by three stiff, light rods of negligible weight shown attached to the main loads 
X1, X2, and X3. These rods can slide freely in a vertical direction through glands in the 
boundary casing, and they carry upper platforms to which small load-increments can be 
applied or removed. The displacement of any load- increment is identical to that of its 
associated load within the system, being observed as the movement of the upper platform. 

We imagine ourselves to be an external agency standing in front of this test system 
in which a specimen is in equilibrium under relatively heavy loads: we test its stability by 
gingerly prodding and poking the system to see how it reacts. We do this by conducting a 
probing operation which is defined to be the slow application and slow removal of an 
infinitesimally small load-increment. The load-increment itself consists of a set of loads 

(any of which may be zero or negative) applied simultaneously to the three 
upper platforms, see Fig. 5.4. 

321 ,, XXX &&&

 

 
Fig. 5.4 Probing Load-increments 

 
Each application and removal of load-increment will need to be so slow that it is at 

all times fully resisted by the effective stresses in the specimen, and at all times excess 
pore-pressures in the specimen are negligible. If increments were suddenly placed on the 
platforms work would be done making the pore-water flow quickly through the pores in 
the specimen. 

We use the term effectively stressed to describe a state in which there are no excess 
pore-pressures within the specimen, i.e., load and load-increment are both acting with full 
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effect on the specimen. In Fig. 5.5(a) OP represents the slow application of a single load-
increment X& fully resisted by the slow compression of an effectively stressed specimen, 
and PO represents the slow removal of the load-increment X& exactly matched by the slow 
swelling of the effectively stressed specimen. It is clear that, in the cycle OPO, by stage P 
the external agency has slowly transferred into the system a small quantity of work of 
magnitude  and by the end O of the cycle this work has been recovered by the 
external agency without loss. 

,)2/1( δX&

In contrast in Fig. 5.5(b) OQ represents a sudden application of a load-increment 
X&  at first resisted by excess pore-pressures and only later coming to stress effectively the 
specimen at R. During the stage QR a quantity of work of magnitude  is transferred 
into the system, of which a half (represented by area OQR) has been dissipated within the 
system in making pore-water flow quickly and the other half (area ORS) remains in store 
in the effectively stressed specimen. Stage RS represents the sudden removal of the whole 
small load-increment 

δX&

X& from the loading platform when it is at its low level. Negative 
pore-pressure gradients are generated which quickly suck water back into the specimen, 
and by the end of the cycle at O the work which was temporarily stored in the specimen 
has all been dissipated. At the end of the loading cycle the small load increment is removed 
at the lower level, and the external agency has transferred into the system the quantity of 
work  indicated by the shaded area OQRS in Fig. 5.5(b), although the effectively 
stressed material structure of the specimen has behaved in a reversible manner. In a study 
of work stored and dissipated in effectively stressed specimens it is therefore essential to 
displace the loading platforms slowly.  

δX&

 

 
Fig. 5.5 Work Done during Probing Cycle 

 
For the most general case of probing we must consider the situation shown in Fig. 

5.5(c) in which the loading platform does not return to its original position at the end of the 
cycle of operations, and the specimen which has been effectively stressed throughout has 
suffered some permanent deformation. The total displacement δ observed after application 
of the load-increment has to be separated into a component  which is recovered when 
the load-increment is removed and a plastic component  which is not. 

rδ
pδ

Because we shall be concerned with quantities of work transferred into and out of 
the test system, and not merely with displacements, we must take careful account of signs 
and treat the displacements as vector quantities. Since we can only discover the plastic 
component as a result of applying and then removing a load-increment, we must write it as 
the resultant of initial, total, and subsequently recovered displacements  

.rp δδδ +=  
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When plastic components of displacement occur we say that the specimen yields. As we 
have already seen in §2.9 and §2.10 we are particularly interested in the states in which the 
specimen will yield, and in the nature of the infinitesimal but irrecoverable displacements 
that occur when the specimen yields.  
 
5.4 Stability and Instability 
 Underlying the whole previous section is the tacit assumption that it is within our 
power to make the displacement diminishingly small: that if we do virtually nothing to 
disturb the system then virtually nothing will happen. We can well recall counter-examples 
of systems which failed when they were barely touched, and if we really were faced with 
this axial-test system in equilibrium under static loads we would be fearful of failure: we 
would not touch the system without attaching some buffer that could absorb as internal or 
potential or inertial energy any power that the system might begin to emit.  

If the disturbance is small then, whatever the specimen may be, we can calculate 
the net quantity of work transferred across the boundary from the external agency to the 
test system, as  

∑ .
2
1 p

iiX δ&  

For example, with the single probing increment illustrated in Fig. 5.5(c) this net quantity of 
work equals the shaded area AOTU. If the specimen is rigid, then and the 
probe has no effect. If the specimen is elastic (used in the sense outlined in chapter 2) then 

 all displacement is recoverable and there is no net transfer of work at the 
completion of the probing cycle. If the specimen is plastic (also used in the sense outlined 
in chapter 2) then some net quantity of work will be transferred to the system. In each of 
these three cases the system satisfies a stability criterion which we will write as  

∆ ,0 r
i

p
i δδ ≡≡

,0≡p
iδ

∑ ≥ ,0p
iiX δ&          (5.1) 

and we will describe these specimens as being made of stable material.  
In a recent discussion Drucker5 writes of  
‘the term stable material, which is a specialization of the rather ill-defined term 
stable system.  
A stable system is, qualitatively, one whose configuration is determined by the 
history of loading in the sense that small perturbations produce a small change in 
response and that no spontaneous change in configuration will occur. Quantitative 
definition of the terms stable, small, perturbation, and response are not clear cut 
when irreversible processes are considered, because a dissipative system does not 
return in general to its original equilibrium configuration when a disturbance is 
removed. Different degrees of stability may exist.’ 
 
Our choice of the stability* criterion (5.1) enables us to distinguish two classes of 

response to probing of our system: 
I Stability, when a cycle of probing of the system produces a response satisfying the 
criterion (5.1), and  
II Instability, when a cycle of probing of the system produces a response violating the 
criterion (5.1).  
 
* This word will only be used in one sense in this text, and will always refer to material stability as discussed in §2.11 
and here in §5.4. It will not be used to describe limiting-stress calculations that relate to failure of soil masses and are 
sometimes called ‘slope-stability’ or ‘stability-of-foundation’ calculations. These limiting-stress calculations will be met 
later in chapter 9.  
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The role of an external attachment in moderating the consequence of instability can 
be illustrated in Fig. 5.6. The axial-test system in that figure has attached to it an 
arrangement in which instability of the specimen permits the transfer of work out of the 
system: Fig. 5.6(a) shows a pulley fixed over the relatively large ram load with a relatively 
small negative load-increment applied by attaching a small weight to the chord 
round the pulley. At the same time a small positive load-increment is applied to 
the pore pressure platform, and we suppose that, for some reason which need not be 
specified here, the change in pore-pressure happens to result, as shown in Fig. 5.6(b), in 
unstable compressive failure of the specimen at constant volume. The large load on the 
ram will fall as the specimen fails, and in doing so will raise the small load-increment. The 
external probing agency has thus provoked a release of usable work from the system. In 
general, the loading masses within the system would take up energy in acceleration, and 
we would observe a sudden uncontrollable displacement of the loading platforms which we 
would take to indicate failure in the system.  

)0( 3 <X&

)0( 1 >X&

The study of systems at failure is problematical. The load-increment sometimes 
brings parts of a test system into an unstable configuration where failure occurs, even 
though the specimen itself is in a state which would not appear unstable in another test in 
another system. In contrast, the study of stable test systems leads in a straightforward 
manner, as is shown below, to development of stress – strain relationships for the specimen 
under test. Once these relationships are known they may be used to solve problems of 
failure.  

It is essential to distinguish stable states from the wider class of states of static 
equilibrium in general. A simple calculation of virtual work within the system boundary 
based on some virtual displacement of parts of a system, would be sufficient to check that 
the system is in static equilibrium, but additional calculations are needed to guarantee 
stability. Engineers generally must design systems not only to perform a stated function but 
also to continue to perform properly under changing conditions. A small change of external 
conditions must only cause a small error in predicted performance of a well engineered 
system. For each state of the system, we check carefully to ensure that there is no 
accessible alternative state into which probing by an external agency can bring the system 
and cause a net emission of power in a probing cycle. 

 
Fig. 5.6 Unstable Yielding 
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In the following sections we begin by considering the stressed state of the specimen 
and the increments of stress and strain. Then come calculations about power, and the use of 
power in the system. This leads to certain interesting calculations, but in §5.10 we will 
return to this stability criterion and make use of it to explain why it is that in some states 
some load-increments make the specimens yield and others do not. The stability criterion is 
essential to this chapter, but before developing it in detail we must select appropriate 
parameters.  
 
5.5 Stress, Stress-increment, and Strain-increment  

Let the state of effective stress experienced by the specimen be separated into 
spherical and deviatoric components, in the same manner that proved helpful to an 
understanding of the mechanical behaviour of elastic material in §2.6 and §2.7. The total 
stresses acting on the specimen uw, σr, and σl can be used to define parameters somewhat 
similar to eq. (2.4):  
effective spherical pressure  

0
3
2

>−
+

= w
rl up σσ        (5.2) 

and axial-deviator stress  
.rlq σσ −=          (5.3) 

In Fig. 5.2 the space diagonal axis has units of √(3)p and the perpendicular axis has units 
√(2/3)q; an alternative and simpler representation of the state of stress of the axial-test 
specimen is now given in Fig. 5.7 where axes p and q are used directly without the 
multiplying factors √(3) and √(2/3)q. 

 
Fig. 5.7 Stress Paths Applied by Probes 

 
In a corresponding manner, parameters of stress-increment can be calculated and used to 
describe any load-increment, namely:  
effective spherical pressure increment  

w
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2σσ         (5.4)  

and axial-deviator stress-increment  
.rlq σσ &&& −=          (5.5)  

The parameters define a vector in the (p, q) plane, and Fig. 5.7 illustrates two 
examples. In each example the specimen drains into the pore-pressure cylinder with no 
pore-pressure load-increment, 

),( qp &&

.0≡wu& One example, AB, (equivalent to a conventional 
drained compression test) involves load-increment only on the ram platform and not on the 
cell pressure platform so that 
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In this example, eqs. (5.4) and (5.5) give  
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so that the load-increment brings the specimen into a state of stress represented on the (p, 
q) plane by some point B on the line through A of slope 3 given by .3

1 qp && = The probing 
cycle would be completed by removal of the load-increment and return of the specimen to 
the original stress state at A (though not necessarily to the original lengths and volumes).  

The second example, AC (equivalent to a drained extension test), involves load-
increment on the cell pressure platform and an equal but opposite negative stress-increment 
on the ram platform, so that  In that case eqs. (5.4) and (5.5) 
give  
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so that the load-increment brings the specimen into a state represented in the (p, q) plane 
by some point C on a line through A of slope 2

3− given by .3
2 qp && −=  As before, 

completion of the probing cycle requires removal of load increments, and a return to a state 
represented by point A.  

The choice of strain-increment parameters to correspond to and  
requires care. It is essential that when the corresponding stress and strain-increments are 
multiplied together they correctly give the incremental work per unit volume performed by 
stresses on the specimen. This essential check will be carried out in the next section, §5.6. 
But in introducing the strain-increment parameters an appeal to intuition is helpful. 
Clearly, change in specimen volume can be chosen to correspond with effective spherical 
pressure and pressure increment. The choice of a strain parameter to correspond with axial-
deviator stress and stress-increment is not so obvious. The ram displacement I does not 
correspond simply to axial-deviator stress; indeed, if an elastic specimen is subjected to 
effective spherical pressure increment without any axial- deviator stress there will be a 
longitudinal strain of one third of the volumetric strain. This suggests the possibility of 
defining a parameter

),( pp & ),( qq &

6 called axial-distortion increment  
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to correspond to axial-deviator stress. The correctness of this choice will be shown in §5.6.  
Care must be taken with signs of these parameters. Since stress is defined to be 

positive in compression, it is necessary to define length reduction and radius reduction as 
positive strain-increments, lε& and rε& respectively. Then defining longitudinal strain-
increment as  

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

−==

−

−==

r
r

r
r

l
l

l
l

r

l

δε

δε

&
&

&
&

asincrementstrainradialand     (5.7) 

we have volumetric strain-increment,  
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v

v
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and eq. (5.6) can be re-written  
).(3

2
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It will be appropriate to distinguish between deformations called  
length reduction when ε&  > 0  

 
and   radius reduction when ε&  < 0.  
 
A little conceptual difficulty may be met later because volumetric strain-increment has 
been defined in eq. (5.8) to be positive when the volume v is being reduced.  

It should be noted that for this choice of parameters to be meaningful principal axes 
of stress, stress-increment, and strain- increment must coincide. 
 
5.6 Power  

The rate (with respect to strain*) of working of the main loading within the system 
on the specimen during the displacements provoked by the external agency will be called 
the loading power of the system. It can be simply calculated from the observed 
displacements of Fig. 5.4 to be  

.)( lavvuE rlrw
&&&& σσσ −++−=       (5.10)  

The upward displacement of the pore-pressure piston is equal and opposite to the 
downward displacement of the cell-pressure piston, and so the loading power depends only 
on the effective stresses  

wllwrr uu −=−= σσσσ ''  

and eq. (5.10) can be re-written  
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Introducing eqs. (5.7) and (5.8), the loading power per unit volume of specimen 
becomes  
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in which form the rate of working of effective stresses moving at their respective strain 
rates is directly evident.  
But from eqs. (5.2), (5.3), (5.8), and (5.9) we obtain  

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

−−+=−−=

+++=+⎟
⎠
⎞

⎜
⎝
⎛ +

=

3
'2

3
'2

3
'2

3
'2))(''(

3
2

and
3
'2

3
'2

3
'4

3
')2(

3
'2'

rllrrrll
rlrl

rllrrrll
rl

rl

q

v
vp

εσεσεσεσεεσσε

εσεσεσεσεεσσ

&&&&
&&&

&&&&
&&

&

 

which when added give  
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This confirms the correctness of the choice of strain-increment parameters, because 
comparison of eqs. (5.11) and (5.12) shows that  
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which is clearly necessary.  
* Equations of the theory of plasticity are independent of time.7  



 71 

At this juncture we must recall the mechanical working of the system and the 
external agency, see Fig. 5.4. The loads within the casing of the test system are relatively 
heavy and they may well have brought the specimen to the point of yielding. The object of 
the tests is to learn how this loaded specimen will adjust itself when it is gently probed. 
During the small displacements that are provoked by the external agency the heavy loads 
moving within the system generate power E&  which the specimen must either store or 
dissipate: in the following section §5.7 we will define the nature of the Granta-gravel 
material by stating the manner in which it disposes of this loading power. All this is taking 
place within the system. In addition, there is the small power input P& by which the external 
agency is controlling, and at the same time provoking, the displacements of the system, 
given by  
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This power is transmitted across the casing or boundary of the system during application of 
the load-increment, but it is altogether smaller than the power of the heavy loads that are 
causing the specimen to deform. We think of P& as a small input signal that controls the 
powerful heavy loads within the system.  

During application of the load-increment the loading power per unit volume 
transferred from the heavy loads to the specimen is, from eq. (5.13),  
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During subsequent unloading the recoverable power per unit volume returned by the 
specimen to the heavy loads within the system is  
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The remainder of the loading power which is not transferred back and has been dissipated 
within the specimen is  
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Of course transfers from heavy loads to specimen and back again do not involve any 
transfer across the casing that surrounds the system. However, there may be some net work 
transferred by the external probing agency across the boundary to the system in the 
complete probing cycle, which is the small quantity  
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corresponding to the shaded area in Fig. 5.5(c). We have already discussed the importance 
of this in §5.4 and seen that our criterion of stability (5.1) requires  
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5.7 Power in Granta-gravel  

To specify the mechanical behaviour of a material it is necessary to prescribe the 
nature of the four terms on the right of eqs. (5.14) and (5.15). For example, if a gas were 
tested only the first term of the first equation v

vp r& would be significant and all the other 
terms would be negligible. Again, if a perfectly elastic material were tested and pv&
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pε& would be zero, and and might be prescribed functions of and  In 
formulating an artificial material we are free to choose what ingredients we like for the 
recipe provided by these two equations. We require Granta-gravel to be an ideal 
rigid/plastic material and so we shall take as our first and major simplification the 
requirement that it never displays any recoverable strains, i.e.,  

rv& rε& pp &, ., qq &

.0≡≡ rrv ε&&          (5.17)  
This means that the application of a probing load-increment either meets with a 

rigid response, or causes yield, but that the subsequent removal of the load-increment has 
no effect at all. There can be no recoverable power U and all loading power & E& is dissipated 
within the specimen as  .W&

We need to specify how this work W  is dissipated, and as Granta-gravel is 
intended to be as simple a model as possible of a frictional granular material we shall 
assume that  
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In this equation M (capital µ) is a simple frictional constant so that W  is linearly 
dependent on p > 0. The modulus sign is required for 

&

ε& because frictional work is always 
dissipated and W  must always be positive. This property of Granta-gravel is a sort of 
‘friction’ in the sense loosely defined in §1.8.  

&

Combining these assumptions and re-writing eqs. (5.14), (5.15), and (5.16) we have 
specified for Granta-gravel  
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and the stability criterion becomes  

.0≥+ ε&&
&&

q
v
vp          (5.20)  

 
5.8 Responses to Probes which cause Yield 

If we have a specimen of Granta-gravel of specific volume v1 under test, in 
equilibrium at the stressed state (p1, q1), and we apply a series of different probes  
we can now use eq. (5.19) to predict responses of the system. Generally, the specimen 
remains rigid but there may be certain probes which cause it to yield, and when yielding 
occurs the power equation (5.19) tells us what ratio of (permanent) increments of strain the 
specimen will experience.  

),,( qp &&

 
For the case of length reduction, ,0>ε&  we have  

1

1

1 p
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v
v
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and for radius reduction, ,0<ε&  
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v
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−−=
ε&
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These equations provide relationships between stress ratio η1= (q1/p1) and strain-increment 
ratio ,

1ε&
&
v

v  and reveal the importance of the constant M. We will describe specimens which 

yield when 11 Mpq < as being weak at yield, and those which yield when 11 Mpq > as 
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being strong at yield, and those which yield when 11 Mpq = as being in a critical state at 
yield.  

At this stage, in order to develop the argument economically, we shall confine our 
attention to specimens that are experiencing a positive deviator stress, q1 >0, and subject to 
reduction of length .0≥ε&  This is equivalent to conducting conventional axial compression 
tests only, but we shall see later that this restriction does not cause loss of generality, as 
similar results can be obtained for extension tests where q1 <0 and .0≤ε&  

 
5.9 Critical States 

Although we are taking q1 >0 and 0≥ε&  we still have three distinct classes of 
specimen to consider:  

a) q1 <Mp1 for which eq. (5.21a) shows that 0>−= vv δ&  so that all specimens weak at 
yield must be compacting,  

b) q1 >Mp1 for which we must have 0<−= vv δ& so that all specimens strong at yield 
must be dilating,  

c) q1 = Mp1 for which  so that specimens yielding in what we call ‘critical states’ 
remain at constant volume, 

0=v&
ε&  is indeterminate, and in these states yield can 

continue to occur without change in q1, p1, or v1. The material behaves as a 
frictional fluid rather than a yielding solid; it is as though the material had melted 
under stress.  
 
The behaviour of each of these three classes (a), (b), and (c) is indicated in Fig. 5.8 

from which it is clear that when the states of  

 
Fig. 5.8 Condition of Specimens at Yield in Relation to Line of Critical States 

 
specimens are represented by the parameters (p, v) in Fig. 5.9 a distinct curve separates an 
area in which yielding specimens compact, from one in which they dilate. In addition, any 
point such as C appropriate to a specimen yielding in a critical state with 

must lie on this curve.  111 , vvMpq ==
Experimental evidence 8-11 supports the assumption that for specimens of Granta-

gravel in tests with length reduction there exists a unique curve of critical states in (p, v, q) 
space. This curve, which will always be shown in diagrams as a double line, is given by the 
pair of equations  

Mpq =         (5.22)  
defining the straight line projection in Figs. 5.8(a), (b), and (c),  
and   pΓv lnλ−=               (5.23) 
 
defining the projected critical curve of Fig. 5.9. (We shall expect a mirror image of this 
critical state curve on the negative side of the q = 0 plane for tests with radius reduction.) 
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 It is experimentally difficult to keep a specimen under control as it approaches the 
critical state and tends towards frictional fluid behaviour. Axial-test specimens have 
closely defined right-cylindrical shape at the start of a test, but we can clearly see them 
lose shape and we must expect that the test system will become unstable and exhibit 
‘failure’ before average conditions in the specimen correspond closely to critical 
conditions. However, leaving to one side at present the difficulties of the specific system of 
Figs. 5.3, 5.4, 5.6, it is necessary to idealize and assume that specimens of Granta-gravel 
can reach a critical state.  

 
Fig. 5.9 Line of Critical States for Length Reduction 

 
5.10 Yielding of Granta-gravel 

From our outline of theory of plasticity in chapter 2 we expect the permissible 
stressed states of a particular specimen of Granta-gravel to be bounded by a convex closed 
yield curve in the axial-test plane or the (p, q) plane of Fig. 5.10. We expect that under 
changes of states of stress represented by paths within the boundary, such as from L to K, 
the specimen of Granta-gravel will remain rigid with no displacements and with its specific 
volume unchanged at v1.  

 

 
Fig. 5.10 Closed Convex Yield Curve 

 
Let us examine in detail the behaviour of a specimen under the state of stress given 

by S, which is on the yield curve with coordinates (ps, qs). We can apply a variety of 
infinitesimal probes as a result of which the specimen either remains rigid or yields 
with permanent deformations satisfying eq. (5.19). The inequality (5.20) tells us whether 
such yielding is stable or unstable. Combining these and eliminating  we obtain the 
inequality  

),,( qp &&

v&

0)( ≥+− εεε &&&&& qpqMpp sss  
and since we have previously specified 0≥ε& we have the requirement for stable yielding  
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Fig. 5.11 Probing Vectors at Point on Yield Curve 

 
Considering in Fig. 5.11 all possible probing vectors at the point S, we can now distinguish 
between those such as ST which are directed outwards from a line through S of slope  
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those such as SR which are directed inwards from the line, and those such as SS' which are 
directed along the line. Under the first of these probings yielding would satisfy the stability 
criterion and inequality (5.24): under the second of these probings rigidity must be 
postulated so that ε&  is zero if the stability criterion is to be satisfied: under the third of 
these probings the specimen experiences a neutral change of state in which it moves into 
an adjacent state of limiting rigidity, still on the point of yielding.  

In this manner we can link the stability criterion with the theory of plasticity, as 
also set out in chapter 2. We can integrate eq. (5.25) to give  

const.ln == p
Mp
q         (5.26)  

  

 
Fig. 5.12 Yield Curve for Specimens of Granta-gravel of Volume v1
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We can evaluate the constant of integration as we know that the yield curve must 
pass through the critical state C1 appropriate to this specimen of specific volume v1. Let 
this be denoted by so that the yield curve becomes  ),( uuu Mpqp =

).0(1ln >=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ q

p
p

Mp
q

u

       (5.27) 

Our argument has been confined so far to loads with q >0 so the yield curve given 
by eq. (5.27) is confined to the positive quadrant as shown in Fig. 5.12(a). If the argument 
of this and the last section (5.9) is now repeated for specimens subject to negative deviator 
stress q <0 and reduction of radius 0≤ε& (equivalent to a conventional extension test) we 
shall get exactly similar expressions but with appropriate changes of sign throughout, and 
derive a yield curve which is the mirror image of that above, i.e.,  
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       (5.28)  

Putting the two together we have established a symmetrical closed convex curve, 
Fig. 5.12(b). The main features of this curve are that it passes through the origin (with the 
q-axis as tangent), has zero gradient at the critical states C1 and , and has a vertex at V1'C 1 
where the gradients are ±M. In particular, the pressure at the vertex denoted by Pe is such 
that i.e.,  ,1)/ln( =ue pp

.718.2 ue pp =         (5.29)  
It must be remembered that the yield curve only applies to specimens of the 

particular specific volume v=v1 that we have considered, and that it is a boundary 
containing all permissible equiiibrium states of stress for this set of specimens. 
Mathematically, in eqs. (5.27) and (5.28) it is the parameter pu which is a unique function 
of v1. In the next section we will consider the family of yield curves that apply to sets of 
specimens of other specific volumes.  
 
5.11 Family of Yield Curves 

In the last section we established the yield curve of Fig. 5.12(b) for specimens of 
specific volume v1. If instead we have a specimen of different specific volume v2, the 
appropriate critical states C2 and  will have moved to a different position on the 
critical curve of Figs. 5.9 and 5.13 dictated by  

2'C ),( uu vp

.ln pΓv λ−=       (5.23 bis)  
We shall have a second yield curve of identical shape but of different size, with the 
position of C (and ) acting as a scaling factor. Both of these curves clearly belong to a 
nest or family of yield curves.  

'C

This family of curves generates a closed surface in the three-dimensional space (p, 
v, q) which must contain all permissible states of specimens; it will not be possible for a 
specimen to be in stable equilibrium in a state represented by a point outside this surface. 
Hence it is called9 the stable-state boundary surface and is represented by the single 
equation  

⎟
⎠
⎞

⎜
⎝
⎛ −

−
+= pvΓMpq ln1

λ
       (5.30)  

obtained from eqs. (5.23) and the pair (5.27) and (5.28). A view of the surface is best seen 
in the direction of the arrow of Fig. 5.13; and the upper half is shown thus in Fig. 5.14.  
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Fig. 5.13 Separate Yield Curves for Specimens of Different Volumes 

 
If we consider a set of specimens all at the same ratio η = q/p>0 at yield, we see 

from substitution in eq. (5.30) that their states must lie on the line  

const.1ln =+⎟
⎠
⎞

⎜
⎝
⎛ −=+ Γ

M
pv ηλλ       (5.31)  

 
Fig. 5.14 Upper Half of State Boundary Surface 
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This is illustrated in Fig. 5.15; where each curve, constant,ln =+ pv λ  corresponds to one 
value of η and vice versa. The critical curve C1C2C3 and the curve joining the vertices 
V1V2V3 are seen to be special members of this set. If the lower diagram, Fig. 5.15(b), is 
plotted with p on a logarithmic scale the set of curves become a set of parallel lines of 
slope – λ, in Fig. 5.15(c).  
 
5.12 Hardening and Softening  

At this stage we must return to consider certain special circumstances in which an 
inward probing vector must be associated with unstable yielding of Granta-gravel.  

Whenever yielding does occur the specimen will suffer permanent deformation 
),( ε&&v  so that after removal of the probe the specimen will have (marginally) changed its 

specific volume from v1 to )()( 11 vvvv &−=+δ and it will then be in state  
From the point of view of the observations that can be made by the external agency the 
specimen will have been distorted into a different rigid specimen of specific volume 

 which in effect is a different material with its own distinct yield curve. It will not 
be possible to reverse this process to return the specimen to its original state at S.  

).,,( 1 ss qvvp &−

),( 1 vv &−

 

 
Fig. 5.15 Set of Specimens Yielding at Same Stress Ratio 
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Fig. 5.16 Hardening 

 
From §5.9 it is apparent that the critical curve divides all possible states of a 

specimen into two distinct categories. Let us first concentrate on specimens which are 
weak at yield for which and show that the application of a small outward 
probing cycle is consistent with stable yielding and permanent deformation 

,0 ss Mpq <<
)0,( >ε&&v to an 

isotropically hardened state. 
From eq. (5.12a) we know that this volumetric strain-increment  must be positive, 

thus δv is negative and the specimen will compact to a smaller total volume 
v&

),()( 112 vvvvv &−=+= δ at which it has a new larger yield curve. On removal of the load-
increment to complete the probing cycle as illustrated in Fig. 5.16, the specimen is left in 
the rigid stressed state ),,( 12 srsr qqvvvpp =−== & which is represented by the point R2, 
inside the dotted yield curve that is appropriate to specimens of specific volume v2. We 
could now add a permanent load-increment of  to our new ‘denser’ specimen at R),( qp && 2 
before bringing it to the verge of yielding again at some point S2 on the larger yield curve. 
The effect of our probe has been to deform the specimen into one that is slightly stronger 
or harder, so that our original assumption of stable yielding is valid. This phenomenon is 
known as hardening and will be the consequence of any outward probe that we choose to 
apply to a specimen with stressed state .0 ss Mpq <<  

In contrast, let us now consider a similar specimen which is in a stressed state F1 
given by (pf, v1, qf) in Fig. 5.17, where it is strong at yield with  We will now 
find that yielding has to be associated with application of an inward probe, and this is 
consistent with instability. If the probing causes the specimen to yield and undergo 
permanent deformation 

.ff Mpq >

)0,( >ε&&v then in this case the volumetric strain-increment v  must 
be negative, the sample must expand to a larger volume 

&

,113 vvvv >+= δ  and in this 
condition at H3 the new ‘looser’ specimen is just in equilibrium governed by a smaller 
yield curve. Hence the probing cycle had to be directed inwards and it will now be 
impossible to complete the cycle and restore the state to (pf, qf) because this state lies 
outside the dotted yield curve and the specimen can no longer sustain these stresses in 
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equilibrium. This means that the effect of probing has been to deform the specimen into 
one that is weaker or softer: we will call this process softening. 

 

 
Fig. 5.17 Softening 

 

 
Fig. 5.18 Rigidity, Stability, and Instability 
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In engineering terms the condition of the specimen at F is what we would recognize 
as a state of incipient failure, and we would need some buffer to arrest displacements if we 
were to try to control the specimen and reduce loads during the softening process. Of 
course if we hàd tried to apply an outward probe such as F1I1 to the original specimen we 
should have observed catastrophic uncontrollable failure. 

The results of probing both categories of specimen are summarized in Fig. 5.18.  
 
5.13 Comparison with Real Granular Materials  
 At this stage we need to take stock of the development of Granta-gravel as an ideal 
artificial material and see whether it has developed into a useful model and whether its 
behaviour bears meaningful and worthwhile resemblance to that of real granular materials. 
We have established certain important features of its behaviour and seen what a dominant 
role the line of critical states plays in dividing the states of the material into those in which 
it will display continuous stable yielding and ‘harden’ from those in which it will ‘fail’ in 
unstable yielding and ‘soften’.  

In our test system we are considering the application of small fixed increments of 
load and imitating a stress controlled test. In reality most modern laboratory testing is 
conducted in a strain-controlled manner, but for the results to be valid the rate of strain 
must be sufficiently slow that pore-pressure gradients are negligible at all times. This will 
be equivalent to applying a continuous sequence of infinitesimal load-increments of 
different intensity so that the rate of strain is constant, i.e., .t&& ∝ε  It will consequently be 
legitimate for us to predict what the results of strain-controlled tests on Granta-gravel 
would be, from our ‘stress-controlled theory’.  

For simplicity, let us consider a compression test on a specimen of initial state (p0, 
v0, q=0) in which at all times the effective spherical pressure p is held constant at p0, so 
that  The state of the specimen throughout the test must lie in the p = p.0≡p& 0 plane, which 
intersects the positive half of the state boundary surface in the straight line  

vpΓ
Mp

qpp −−+== )ln( 0
0

0 λλλ      (5.32) 

obtained directly from eq. (5.30), and shown in Fig. 5.19 in the three projected views of the 
stable-state boundary surface containing all the points A, B, C, D, E, F, G, and V.  

If the initial condition is such that )ln( 00 pΓv λ−> the specimen will start at state 
A, in a condition looser or wetter than critical. As the axial-deviator stress is increased the 
specimen will remain rigid until it yields at B (when it reaches the yield curve 
corresponding to v = v0) and then continue to yield in a stable hardening manner up BDC 
until it eventually reaches the critical state at C after infinite strain. 

Conversely, a specimen with )ln( 00 pΓv λ−< will start at state E in a condition 
denser or drier than critical. The specimen remains rigid until it reaches state F and 
thereafter exhibits unstable softening down FGC until it reaches the critical state at C, after 
infinite strain.  
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Fig. 5.19 Constant-p Test Paths 

 
For convenience, let Z always be used to denote the point in (p, v, q) space 

representing the current state of the specimen at the particular stage of the test under 
consideration. As the test progresses the passage of Z on the state boundary surface either 
from B up towards C, or from F down towards C will be exactly specified by the set of 
three equations:  
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The first two equations govern the behaviour of all specimens and the third is the 
restriction on the test path imposed by our choice of test conditions for this specimen. We 
will find it convenient in a constant-p test to relate the initial state of the specimen to its 
ultimate critical state by the total change in volume represented by the distance AC (or EC) 
in Fig. 5.19(c) and define  

.ln 0000 pΓvvvD c λ+−=−=       (5.34) 
The conventional way of presenting the test data would be in plots of axial-deviator 

stress q against cumulative shear strain ε and total volumetric strain ∆v/v0 against ε; and 
this can be achieved by manipulating equations (5.33) as follows. From the last two 
equations and (5.34) we have  

)( 000 DvvMpq −+−= λλ  
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and substituting in the first equation  
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Remembering that δεε +=&  whereas vv δ−=&  this becomes  
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Integrating 
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and if ε is measured from the beginning of the test  
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which is the desired relationship between 
0v

∆v and ε.  

 
Fig. 5.20 Constant-p Test Results 
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Similarly we can obtain q as a function of ε  
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These relationships for (i) a specimen looser than critical and (ii) a specimen denser 
than critical are plotted in Fig. 5.20 and demonstrate that we have been able to describe a 
complete strain-controlled constant-p axial-compression test on a specimen of Granta-
gravel.  

In a similar manner we could describe a conventional drained test in which the cell 
pressure rσ is kept constant and the axial load varies as the plunger is displaced at a 
constant rate. In §5.5 we saw that throughout such a test ,3

1 qp && =  so that the state of the 
specimen, Z, would be confined at all times to the plane .3

1
0 qpp +=  Hence the section of 

this ‘drained’ plane with the state boundary surface is very similar to the constant-p test of 
Fig. 5.19 except that the plane has been rotated about its intersection with the q = 0 plane 
to make an angle of tan-1 3 with it.  

The differential equation corresponding to eq. (5.35) is not directly integrable, but 
gives rise to curves of the same form as those of Fig. 5.20.  

An attempt to compare these with actual test results on cohesion-less granular 
materials is not very fruitful. Such specimens are rarely in a condition looser than critical; 
when they are, it is usually because they are subject to high confining pressures outside the 
normal range of standard laboratory axial-test equipment. Among the limited published 
data is a series of drained tests on sand and silt by Hirschfeld and Poulos12, and the 
‘loosest’ test quoted on the sand is reproduced in Fig. 5.21 showing a marked resemblance 
to the behaviour of constant-p tests for Granta-gravel.  
 

 
Fig. 5.21 Drained Axial Test on Sand (After Hirschfeld & Poulos) 

 
For the case of specimens denser than critical, Granta-gravel is rigid until peak 

deviator stress is reached, and we shall not expect very satisfactory correlation with 
experimental results for strains after peak on account of the instability of the test system 
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and the non-uniformity of distortion that are to be expected in real specimens. This topic 
will be discussed further in chapter 8.  

However, it is valuable to compare the predictions for peak conditions such as at 
state F of Fig. 5.19 and this will be done in the next section. 
 
5.14 Taylor’s Results on Ottawa Sand  

In chapter 14 of his book13 Fundamentals of Soil Mechanics Taylor discusses in 
detail the shearing characteristics of sands and uses the word ‘interlocking’ to describe the 
effect of dilatancy. He presents results of direct shear tests in which the specimen is 
essentially experiencing the conditions of Fig. 5.22(a); the direct shear apparatus is 
described in Taylor’s book, and the main features can be seen in the Krey shear apparatus 
of Fig. 8.2. In these tests the vertical effective stress 'σ  was held constant, and the 
specimens all apparently denser than critical were tested in a fully air-dried condition, i.e., 
there was no water in the pore space. (It is well established that sand specimens will 
exhibit similar behaviour to that illustrated in Fig. 5.22(b) with voids either completely 
empty or completely full of water, provided that the drainage conditions are the same.)  

 

 
Fig. 5.22 Results of Direct Shear Tests on Sand 

 
On page 346 of his book, Taylor calculates the loading power being supplied to the 

specimen making due allowance for the external work done by the interlocking or 
dilatation. In effect, he calculates for the peak stress point F the expression 

xAyAxA &&& '' µσστ =−        (5.38) 
(total loading power = frictional work) 

 
which has been written in our terminology, and where A is the cross-sectional area of the 
specimen. This is directly analogous to eq. (5.19),  

εε &
&

& Mp
v
vpq =+  

which relates true stress invariants p and q, and which expresses the loading power per unit 
volume of specimen. The parameters are directly comparable: q with τ, p with 'σ , ε&  with 

 and with ,x& vv /& y&− (opposite sign convention); and so we can associate Taylor’s 
approach with the Granta-gravel model.  
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Fig. 5.23 Friction Angle Data from Direct Shear Tests (Ottawa Standard Sand) (After Taylor) 

 

 
Fig. 5.24 Friction Angle Data from Direct Shear Tests replotted from Fig. 5.23 

 
The comparison can be taken a stage further than this. In his Fig. 14.10, reproduced 

here as Fig. 5.23, Taylor shows the variation of peak friction angle mφ  (where 'tan σ
τφ m

m = ) 
with initial voids ratio e0 for different values of fixed normal stress 'σ . These results have 
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been directly replotted in Fig. 5.24 as curves of constant mφ (or peak stress ratio 'σ
τ m ) for 

differing values of v = (1 + e) and 'σ . 
There is a striking similarity with Fig. 5.15(b) where each curve is associated with a 

set of Granta-gravel specimens that have the same value of q/p at yield. Taylor suggests an 
ultimate value of φ for his direct shear tests of 26.7° which can be taken to correspond to 
the critical state condition, so that all the curves in Fig. 5.24 are on the dense side of the 
critical curve.  
 
5.15 Undrained Tests  

Having examined the behaviour of Granta-gravel in constant-p and conventional 
drained tests, we now consider what happens if we attempt to conduct an undrained test on 
a specimen. In doing so we shall expose a deficiency in the model formed by this artificial 
material.  

It is important to appreciate that in our test system of Fig. 5.4, although there are 
three separate platforms to each of which we can apply a load-increment,  we only 
have two degrees of freedom regarding our choice of probe experienced by the 
specimen. This is really a consequence of the principle of effective stress, in that the 
behaviour of the specimen in our test system is controlled by two effective stress 
parameters which can be either the pair 

,iX&

),( qp &&

)','( rl σσ or (p, q). The effects of the loads on the 
cell-pressure and pore-pressure platforms are not independent; they combine to control the 
effective radial stress r'σ  experienced by the specimen.  

Throughout a conventional drained test we choose to have zero load-increments on 
the pore-pressure and cell-pressure platforms and to deform the specimen by 
means of varying the axial load-increment and allowing it to change its volume.  

)0( 21 ≡= XX &&

,3X&

In contrast, in a conventional undrained test we choose to have zero load-increment 
 on the cell-pressure platform only, and to deform the specimen by means of varying 

the axial load-increment  However, we can only keep the specimen at constant volume 
by applying a simultaneous load-increment  of a specific magnitude which is dictated 
by the response of the specimen. Hence for any choice of made by the external agency, the 
specimen will require an associated  if its volume is to be kept constant.  

2X&

.3X&

1X&

1X&

Let our specimen of Granta-gravel be in an initial state  represented by 
I in Fig. 5.25. As we start to increase the axial load by a series of small increments  the 
specimen remains rigid and has no tendency to change volume so that the associated are 
all zero. Under these conditions there is no change in pore-pressure and 

)0,,( 01 =qvp
,3X&

1X&

qp && 3
1=  so that the 

point Z representing the state of the sample starts to move up the line IJ of slope 3.  
This process will continue until Z reaches the yield curve, appropriate to  at 

point K. At this stage of the test in order that the specimen should remain at constant 
volume, Z cannot go outside the yield curve (otherwise it would result in permanent 

and

,0vv =

v& ε& ); thus as q further increases the only possibility is for Z to progress along the yield 
curve in a series of steps of neutral change. Once past the point K, the shape of the yield 
curve will dictate the magnitude of that is required for each successive  At a point 
such as L the required will be represented by the distance 

1X& .3X&

∑ 1X& ,pLM 3
1

0 pq −+=  so that 
this offset indicates the total increase of pore- pressure experienced by the specimen.  
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Fig. 5.25 Undrained Test Path for Loose Specimen of Granta-gravel 

 

 
Fig. 5.26 Undrained Test Results for Loose Specimen of Granta-gravel 

 
Eventually the specimen reaches the critical state at C when it will deform at 

constant volume with indeterminate distortion .ε  The conventional plots of deviator stress 
and pore-pressure against shear strainε will be as shown in Fig. 5.26, indicating a 
rigid/perfectly plastic response.  

As mentioned in §5.13, when comparing the behaviour in drained tests of Granta-
gravel with that of real cohesionless materials, it is rare to find published data of tests on 
specimens in a condition looser than critical. However, some undrained tests on Ham River 
sand in this condition have been reported by Bishop14; and the results of one of these tests 
have been reproduced in Fig. 5.27. (This test is No. 9 on a specimen of porosity 44.9 per 
cent, i.e., v = 1.815; it should be noted that for an undrained test 02 31 ≡+= εε &&&

v
v so that 

strain.axial)( 1313
2 ==−= εεεε &&&& ) 
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Fig. 5.27 Undrained Test Results on very Loose’ Specimen of Ham River Sand (After Bishop) 

 
The results show a close similarity to that of Fig. 5.26. In particular it is significant 

that axial-deviator stress reaches a peak at a very small axial strain of only about 1 per 
cent, whereas in a drained test on a similar specimen at least 15–20 per cent axial strain is 
required to reach peak. We can compare Bishop’s test results of Fig. 5.27 with Hirschfeld 
and Poulos’12 test results of Fig. 5.21. These figures may be further compared with Fig. 
5.26 and 5.20 which predict extreme values for Granta-gravel which are respectively zero 
strain and infinite strain to reach peak in undrained and drained tests.  

 
Fig. 5.28 Undrained Test Path for very ‘Loose’ Specimen of Ham River Sand 

 
Although the Granta-gravel model is seen to be deficient in not allowing us to 

estimate any values of strains during an undrained test, we can get information about the 
stresses. The results of Fig. 5.27 have been re-plotted in Fig. 5.28 and need to be compared 
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with the path IKLC of Fig. 5.25. An accurate assessment of how close the actual path in 
Fig. 5.28 is to the shape of the yield curve is presented in Fig. 5.29 where q/p has been 
plotted against ),ln( upp and the yield curve becomes the straight line  

[ .ln(1 uppMp
q −= ]        (5.27 bis) 

The points obtained for the latter part of the test lie very close to a straight line and indicate 
a value for M of the order of 1.2, but this value will be sensitive to the value of pu chosen 
to represent the critical state.  

 
Fig. 5.29 Undrained Test Path Replotted from Fig. 5.28 

 
Consideration of undrained tests on specimens denser than critical leads to an 

anomaly. If the specimen is in an initial state at a point such as I in Fig. 5.30 we should 
expect the test path to progress up the line IJ until the yield curve is reached at K and then 
move round the yield curve until the critical state is reached at C. However, experience 
suggests that the test path for real cohesionless materials turns off the line IJ at N and 
progresses up the straight line NC which is collinear with the origin.  
 

 
Fig. 5.30 Undrained Test Path for Dense Specimen of Granta-gravel 

 
At the point N, and anywhere on NC, the stressed state of the specimen is 

such that in the initial specification of Granta-gravel, we have the curious situation in 
which the power eq. (5.19) (for

Mpq =

0≥ε& )  

εε &&
&

Mpq
v
vp

=+  

is satisfied for all values of ε& , since .0≡v&  Moreover, the stability criterion is also satisfied 
so long as  which will be the case. Hence it is quite possible for the test path to take ,0>q&
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a short cut by moving up the line NC while still fulfilling the conditions imposed on the 
test system by the external agency. This, together with the occurrence of instability when 
specimens yield with (as shown in Fig. 5.18), lead us to regard the plane Mpq > Mpq =  
as forming a boundary to the domain of stable states. Our Fig. 5.14 therefore must be 
modified: the plane containing the line C1C2C3C4 and the axis of v will become a boundary 
of the stable states instead of the curved surface shown in Fig. 5.14. This modification has 
the fortunate consequence of eliminating any states in which the material experiences a 
negative principal stress, and hence we need not concern ourselves with the possibility of 
tension-cracking.  
 
5.16 Summary  

In this chapter we have investigated the behaviour of the artificial material Granta-
gravel and seen that in many respects this does resemble the general pattern of behaviour 
of real cohesionless granular materials. The model was seen to be deficient (5. 15) 
regarding undrained tests in that no distortion whatsoever occurs until the stresses have 
built up to bring the specimen into the critical state appropriate to its particular volume. 
This difficulty can be overcome by introducing a more sophisticated model, Cam-clay, in 
the next chapter, which is not rigid/perfectly plastic in its response to a probe.  

In particular, the specification of Granta-gravel can be summarized as follows:  
 
(a) No recoverable strains  

0≡≡ rrv ε&&  
(b) Loading power all dissipated  

εε &&
&

Mpq
v
vp

=+         (5.19 bis) 

(c) Equations of critical states  
Mpq =          (5.22 bis) 

pΓv lnλ−=          (5.23 bis) 
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